\bullet	\bullet			\bullet	

50th Annual

Washington College Mathematics Conference

Yakima Convention Center May 17-19, 2018

Hosted by the Edmonds Community College Mathematics Department
\square

SCHEDULE

Thursday, May 17

5:30-7:00 p.m.	Department Chair Meeting
7:30-9:00 p.m.	Opening Session
9:00-10:30 p.m.	Crowdsourced Data Collection
E	

Friday, May 18

Saturday, May 19

7:00-8:00 a.m.	50 hm Estimation Run/Walk	L
7:30-9:00 a.m.	Breakfast	D
9:30-10:20 a.m.	Session VI	A B F G H
10:40-11:30 a.m.	Session VII	A B F G H
11:31 a.m.	Conference Ends	L

Your nametag is your meal ticket. Please return nametag holders and unwanted book bags to the registration desk before departure.

ONLINE RESOURCES

For electronic access to session handouts and links (and more!), enroll in WAMAP course 14626 (no enrollment key required). If you are not already a WAMAP user (or to access the WAMAP material without logging in) follow the instructions on the conference Web site: www . wamath. org

CONFERENCE HISTORY \& FUTURE

1969 Green River + Highline + Ft. Steilacoom
1970 Spokane Falls
1971 Everett
1972 Everett
1973 Seattle Central
1974 Green River
1975 Highline
1976 Bellevue
1977 Shoreline
1978 Edmonds
1979 Olympic
1980 Spokane Falls
1981 Spokane Falls
1982 Highline
1983 Olympic
1984 Green River
1985 Shoreline
1986 North Seattle
1987 Lower Columbia
1988 Olympic
1989 Bellevue
1990 Clark
1991 Pierce + Tacoma
1992 Yakima
1993 Highline
1994 South Seattle

1995 Skagit Valley + Whatcom 1996 Spokane Falls + ORMATYC
1997 Green River
1998 Tacoma + Big Bend
1999 Edmonds
2000 Bellevue
2001 Peninsula + ORMATYC
2002 Clark
2003 Spokane + North Idaho
2004 Pierce
2005 Highline
2006 Olympic + ORMATYC
2007 Wenatchee
2008 North Seattle
2009 Columbia Basin
2010 Yakima
2011 Green River + ORMATYC
2012 Tacoma
2013 Whatcom
2014 Everett + Shoreline
2015 Bellevue
2016 Clark + ORMATYC
2017 Highline
2018 Edmonds
2019 Centralia + Bates
2020 Pierce
2021 Clark + ORMATYC

More information and 25-plus years of conference programs available at: www. wamath.org/about

L = Lobby

DIVERSIONS

Crowdsourced Data Collection

After Thursday's talk, engage your fellow mathematicians in conversation and gather information using the data-collection form found inside this program. Forms are due at the registration table by 1:30 p.m. Friday to be eligible for prize(s).

Challenge Problems

Participants are on the honor system not to use Google or other resources. Submit solutions (showing all work) to the registration desk no later than 6:30 p.m. Friday. High scorers will be announced during breakfast on Saturday. Decisions made by the judge(s) are final.

1. Compute $\frac{W}{A}$ if $W=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x$ and $A=\int_{0}^{1}\left(1-x^{50}\right)^{101} d x$.
2. Compute $\prod_{k=1}^{2018} \cos (k \theta)$ if $\theta=\frac{2 \pi}{2018}$.
3. The first quadrant contains three regions of finite area bounded by the line $y=c$ and the curve $y=2018 x-50 x^{3}$. Find the value of c for which the region bounded by the y-axis and the region bounded below by the line have equal area.
4. A mathematician saves her name badges from each of 50 math conferences she has attended. If she randomly selects 18 of the badges (with replacement), what is the expected value of the number of distinct badges she selects?
5. Eighteen mathematicians arrive at a conference having failed to register in advance and agree to eat whatever the kitchen serves them for dinner. If there is enough extra food to make 50 salmon, 17 chicken, 6 lasagna and 4 meatless meatloaf dinners, how many distinct sets of 18 extra meals can the chef prepare?
6. Divide 50 liters of water evenly between containers A and B. Pour half the contents of B into A, then pour half the remaining contents of B into A, and finally pour half the contents of A into B. Repeat this BBA pattern ad infinitum. What is the limiting value of the amount of water in B ? What if the initial amounts of water in A and B are unequal?
7. Compute $\frac{I}{J}$ if $I=\int_{0}^{50 \pi} e^{t}\left[\cos ^{2018}(t)+\sin ^{2018}(t)\right] d t$ and $J=\int_{0}^{\pi} e^{t}\left[\cos ^{2018}(t)+\sin ^{2018}(t)\right] d t$.
8. Randomly select α from $\{1,2,3, \ldots, 10\}, \beta$ from $\{1,2,3, \ldots, 20\}, \gamma$ from $\{1,2,3, \ldots, 30\}, \delta$ from $\{1,2,3, \ldots, 40\}$ and ϵ from $\{1,2,3, \ldots, 50\}$. Compute the probability that $\alpha<\beta<\gamma<\delta<\epsilon$.
9. During the first 50 minutes of May 18, 2018, for how long are the hour, minute and second hands of a 12 -hour analog clock all on the same side of some diameter of that clock, assuming that the hands all move continuously?
10. If $\pi(x)$ is a polynomial of degree $d \leq 2018$ with $\pi(0) \cdot \pi(1) \cdot \pi(-1) \neq 0$ and $\frac{d^{2018}}{d x^{2018}}\left[\frac{\pi(x)}{x^{3}-x}\right]=\frac{\varphi(x)}{\gamma(x)}$ where $\varphi(x)$ and $\gamma(x)$ are polynomials, find the minimal degree of $\varphi(x)$.

Applied Probability: Games

At 3:30 p.m. Friday, following Mike Kenyon's "Play More Games!" talk, join a game-playing session in Ballroom H.

Pseudorandom Walks: Tours of Yakima Tasting Rooms

Yakima Valley is the hops capital of the United States and one of Washington's finest wine regions. Knewton is providing transportation for a tour of Bale Breaker Brewing Co. from 4:00 to 6:00 p.m. on Friday; sign up at the registration desk. Or join colleagues on a self-guided tour of the wine-tasting rooms just a short walk from the Convention Center; pick up a map at the registration desk. As with all conferences, we ask that you confer responsibly. Please return in time for dinner.

Musico-kinesthetic Recreation: Dance the Night Away

After Friday's keynote talk, Ballroom E will feature music (provided by Pristine Entertainment) and dancing until 10:30 p.m. Put on your dancing shoes, grab a partner and cut a rug, or just enjoy the music. A no-host bar will add to the ambience.

50 hm Estimation Run/Walk

Before breakfast on Saturday, enjoy some exercise with a 50-hectometer ($=5 \mathrm{~km}$) group run/walk. Meet in the Red Lion lobby by 6:55 a.m. and record a prediction of how long it will take you to run or walk (or skip or jog) the course: no watches, phones, Garmins or other timekeepers allowed! Information sheets are available at the registration desk.

ABSTRACTS

Opening Session

Thursday 7:30-9:00 p.m.

Finding Patterns: Art and Math
 Luke Rawlings - Bellevue College

D

Presenting his original artwork, Luke Rawlings will explore ties to mathematics and mathematics education, while discussing the challenging work required to produce a dissertation involving regular division of the plane (inspired by M.C. Escher) and its relationship to abstract algebra. The talk will also reveal how he created these works of art using principles of symmetry, the different symmetries one can find in art, and examples of how art can be used to illuminate some of the mathematics one might encounter in a course on abstract algebra.

Session I

Friday 8:50-9:40 a.m.
Pre-college Mathematics Reform: A Status Update A John Mitchell • Clark College
Clark College is currently restructuring and simplifying its pre-college offerings, aiming for a higher proportion of students to successfully complete college-level courses within their first year. We are implementing a two-quarter applied algebra sequence to better serve those destined for less technical college-level courses, along with "co-requisite remediation" of targeted pre-college topics in college-level STEM and business courses. We overview the course structure and its motivation, outline how we are addressing teacher training, advising and other project impacts, and discuss what we have learned so far - as well as the challenges that lie ahead. There will also be some time for group discussion and reflection, so participants can share pathways ideas and best practices.

Accessibility in WAMAP

David Lippman • Pierce College Ft. Steilacoom
Ensuring the accessibility of our course materials is an essential responsibility for us all. This talk will explore the built-in accessibility features of WAMAP, and discuss best practices and techniques for ensuring the accessibility of content and questions.

Flippin' Statistics

Tyler Wallace • Big Bend Community College
Flipping the classroom provides many benefits, including extra time to focus on conceptual understanding rather than just procedural fluency. This talk will examine a flipped statistics course and some example activities used to reinforce conceptual understanding of topics students typically struggle to understand (even if they can correctly calculate the answer), along with an open-source textbook that provides many flipped activities (although this will not be the focus of the talk).

A Short History of
 Mathematical Notation and Symbols
 Rajesh Lal • Pierce College

How is our mathematical thinking different from that of our ancestors? What is the difference between mathematical symbol and mathematical notation? How do symbols take us beyond what they are meant to represent? Why do we use the letter x so much in math? What are the pedagogical implications? This workshop will intersperse short presentations with activities and discussion.

Game On! Using Play to Engage

Students in Pre-college Courses

Leslie Glen • Whatcom Community College

If students encounter the same content delivered the same way as when they failed a high-school course, they are unlikely to believe they will fare any better. Research on mindset shows how easy it is to change your mind about your ability to accomplish a task, but what can prompt us to make that change? By using games designed specifically to convey mathematical concepts, we can engage students in ways that may not have seemed possible to them before. Well-designed games are level-playing-field starting points, and the space in which they are played is safe and happy. We will discuss mindset, what is meant by a "well-designed" game, and how to go about creating one.

Session II

Friday 9:55-10:45 a.m.

Continuity and Context in Statistics A

Allen Mauney • South Puget Sound Community College
Statistics textbooks (and courses) generally move from topic to topic without providing a thread linking the subjects into a coherent whole. There is little evidence in the texts that all of these methods and techniques could be used to address questions about a single topic or data set. Professionals use the approach: Here is a task and here are my tools which of these (maybe all!) can I use to understand what's going on? I have extended work in a Mathematics Teacher paper (and continued by Mario Triola in several of his texts) investigating gender/age discrimination at the Oscars. Students apply each new method to better understand the data, reflecting on the relative value and strength of graphical, probabilistic and inferential techniques to understand problems and make decisions.

Math in Motion: A Learning Community Integrating Physics and Calculus! Jonathan Ursin \& Danielle Mallare-Dani Seattle Central College

We will present our experiences co-teaching a learning community integrating physics and calculus, discussing benefits and challenges, and sharing example assignments, schedules and student feedback, while discussing logistics in the creation of the courses.

The High School Math Assessment and
Bridge to College Math
Megan Luce • Cascadia College \mid Bill Moore • SBCTC
The "July surprise" legislation of last summer moved the Smarter Balanced Assessment of college readiness from 11th grade to 10th grade. This session will explore how this shift might impact the system-wide placement agreement as well as future directions for the Bridge to College Math course that is currently being taught in over 100 Washington school districts. Come provide your perspectives on how to address these changes and help prepare high-school students to succeed in college-level math!

The Mathematics of Musical

Tuning and Temperament
Eric Mack • North Idaho College
I have created and teach an interdisciplinary class titled "The Mathematics and Aesthetics of Musical Tuning." At the heart of this topic is the impossibility of obtaining an integer solution to the equation $2^{x}=3^{x}$, two being the ratio between frequencies that our human ears hear as octaves and three the ratio of frequencies we hear as perfect 12ths. In this presentation we will explore the nature of the conundrum, some of its many imperfect solutions, the philosophy behind them, and the art they have given rise to over the millennia. Computer programs will make the math audible, bringing this ancient quadrivium subject to life.

Liven Up Your Class With Kahoot!

Pam Lippert \& Deanna Li • North Seattle College
Want an exciting first day of class? Want a quick way to check your students' understanding? Tired of paper-andpencil or online test reviews? Kahoot! may be the answer. Learn how you can make your own Kahoot! and see how we have used it with our classes. For the ultimate experience, bring a smartphone, tablet or laptop.

Session III

Friday 11:00-11:50 a.m.

WAMATYC Invited Session in Mathematics:

The Algebra of Technology
Olga Shatunova • University of Washington Tacoma
Boolean algebra is credited with laying the foundation for the information age. In my talk I will discuss Boolean algebra (which is particularly important to computer science and abstract mathematics) and how it is utilized in technology, computer design and the theory of switches. I will discuss Boolean algebra as an example of an algebraic system, laws of thought, its operations and its many applications. Students get excited when they see how computers and other technology work based on Boolean algebra. As time allows, we will see how to create components for computing.

Implementing Math Pathways:
 Bringing Departments Together Through Professional Development

Alys Hugo \& Mike Story • Everett Community College
Everett Community College recently redesigned its developmental math sequence in accordance with Guided Pathways, removing some traditional algebra topics for non-STEM students to allow greater focus on conceptual understanding and problem-solving. Everett's efforts are unusual in that the mathematics department has been working closely with Transitional Studies (previously Adult Basic Education) to ensure student success across the widest-possible demographic while providing significant professional development to faculty. We'll address the mechanics of our redesign from conception through implementation and the challenges and rewards of our cross-campus collaboration, providing feedback from instructors, sharing data on student success, and exploring a history as told by flowcharts.

Vorticity in Basic Multivariable Calculus

Yves Nievergelt • Eastern Washington University
Increasingly, engineers and scientists are talking about topological insulators. What they call the "vorticity" of a nonvanishing planar vector field is not its curl but its "degree." The degree is continuous, but (unlike the curl) it is an integer. Therefore the degree does not change if conditions are slightly perturbed, so it might be used to store information - this is why people are interested in it. This talk will show how to introduce and practice vorticity in basic multivariable calculus without adding any new material, merely by replacing old examples, exercises and homework problems with new ones at the same level.

Get Your Students Involved,
 Thinking, and Talking Math
 Nancy Marx • Edmonds Community College

In this interactive, hands-on session, I will demonstrate various simple methods to increase students' engagement with each other and mathematics. These strategies increase students' retention and comprehension and make the mathematics classroom a more productive space. These easy-touse activities work for every level of class.

Dollar Street: A New Kind of Data With Many Possibilities

Rejoice Mudzimiri \& Robin Angotti
University of Washington Bothell
Immigrant students bring rich, diverse cultural backgrounds to mathematics classrooms that can enrich those classrooms using Dollar Street, an online photo and data resource that imagines the world as a street ordered by income. On Dollar Street, the poorest live to the left and the richest to the right, while everybody else lives somewhere in between. This session will introduce participants to Dollar Street and explore some mathematics activities that incorporate Dollar Street data.

Session IV

Friday 1:30-2:20 p.m.

Graphing Without a Calculator

William Webber • Whatcom Community College
In this era of readily accessible graphing utilities, I find myself wondering if students even know how to graph a function without technology. In fact, graphing calculators have been around long enough that I wonder how much teachers even know about drawing graphs of functions and equations. In this presentation I will look at a range of graphing techniques from beginner to advanced. We will end by discussing how the ability to draw graphs leads to the more applicable skill of mathematical modeling.

The Transfer-Student Experience:
Smoothing the Transition
Erik Tou, Haley Skipper, Brian Heaven \&
Shubha Rajopadhye • University of Washington Tacoma
Students who begin their post-secondary career at a Washington community college often face unique challenges when they transition to a four-year school. This roundtable will consider two broad themes: curriculum and communication. Our goal is to identify good curricular choices for both two-year and four-year institutions that can smooth the transition for students, along with best practices for communication that will promote student success.

Back to Basics: Outcomes From Redesigning
 Basic Math Course Sequences

Ryan Orr \& Rebecca Luttrell • Columbia Basin College
During Fall 2015, with funding from a Title V grant, Columbia Basin College began pilot courses implementing redesigned instructional delivery methods to students in the first two classes of the developmental-math course sequence. We will discuss the redesigns implemented, lessons learned, changes made and the current state of these courses, along with student-outcome data, future plans and redesign at other levels, and encourage a discussion between other faculty or colleges who may be considering a redesign of their developmental-math courses.

An Accelerated Math Literacy Pathway via I-BEST G Christopher Cary • Spokane Falls Community College

Learn how we created an academic I-BEST program that provides a cohort of students on the math literacy pathway the opportunity to complete developmental and college-level math in one quarter. Journey over hurdles and through hoops, with stops in Placement Land, Advising Town, Registarville and the trendy suburb of OER.

Puzzle Morsels

Murali Krishna • Clark College

I have been perusing the excellent MAA book More Mathematical Morsels by the late Canadian mathematician Ross

Honsberger (1929-2016) and selected some very entertaining puzzles from this book and other sources. These are not trivial to solve but have short and very elegant answers. I will present as many of these as possible in the time allotted.

To access the puzzle problems prior to the talk, visit the WAMAP classroom associated with the conference (see inside the front cover of this program for details).

Session V

Friday 2:35-3:25 p.m.

A Collaborative Journey:

Virtual Manipulatives for Mathematics
Frank Marfai • Phoenix College
William Meacham • Scottsdale Community College
Mathematics Virtual Manipulatives, an interactive OER resource to support student learning in developmental mathematics, resulted from a collaborative effort between faculty at two of the Maricopa Community Colleges. This resource transforms the way we can teach mathematics, allowing students to move virtual objects through a touchscreen or iPad, and introducing efficiencies and opportunities not available with physical manipulatives (student responses to these manipulatives can be assessed through WAMAP). The virtual manipulatives give concrete representations to concepts students originally found abstract (which forced them to memorize rules without understanding why they work). Students experience firsthand why the sum of two negative numbers is negative but their product is positive, and why $\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\left(\operatorname{not} \frac{2}{7}\right)$. Seeing students overcoming their fear of math through these successful experiences is motivating and inspiring.

Transitioning Learners to Calculus:

Self-Assessing Your Program
Helen Burn • Highline College
This presentation focuses on a model and self-assessment tool that will enable participants to begin to self-assess how their program supports the transition of diverse learners to calculus. The tools were developed as part of the NSFfunded Transitioning Learners to Calculus in Community Colleges (NSF DUE-IUSE \#1625918).

Introducing Precalculus Students to STEM Careers

Tiffany Ledford \& Gabrielle McIntosh
Edmonds Community College
In an effort to attract a more diverse group of students to STEM fields, we embedded short career-focus videos into our precalculus classes and followed each with a related problem that connected the career to the topic being covered in class. We will share what we did and what we are learning from this project.

2:35-3:00
This is the first half of a split session featuring two 25-minute presentations; the abstract for the companion talk follows.

Educational Data Mining: A Study of Usage Patterns in a Quantitative Tutoring Center
Robin Angotti, Tyler Shea \& Abram Girgis
University of Washington Bothell
Using the emerging field of Educational Data Mining (EDM), analysts can leverage large amounts of student data to discover meaningful information about learners or the structures of the educational system. UW Bothell faculty and undergraduate research (UGR) students extracted institutional data on student demographics and use statistics from a quantitative tutoring center. Using Exploratory Data Analysis and dynamic visualization software, the team studied differences in usage by gender and ethnicity, as well as the correlation of use and student grade. The team will discuss the process of mining data, data cleaning, joining multiyear data sets from two sources, and externalizing student data in graphical form for end users to explore, along with preliminary study results and the challenges and opportunities of involving UGR students in EDM.

3:00-3:25

Undergraduate Research Projects Woven Into Remedial Math Curriculum

Michal Ramos • Yakima Valley College
Opportunities for undergraduate research (UGR) predominantly arise for students with college-level standing in mathematics and science. Yet meaningful UGR projects can be facilitated within a remedial math course to expose students to the rewarding and motivating experiences of collecting data, designing experiments, interpreting outcomes, and presenting findings to a diverse audience. These projects can address issues directly related to the campus to generate more buy-in from student participants. Standard math concepts and skills taught in remedial courses are directly applied to such projects. This talk will discuss a case study involving two cohorts of students: one in accelerated PreAlgebra/Beginning Algebra and another in accelerated Beginning/Intermediate Algebra.

Play More Games!

Mike Kenyon • Green River College
We live in a "golden age" of games, especially board games and card games. Some of these are appropriate to the mathematics classroom and can enhance student engagement as well as understanding, both at the conceptual level and with specific content. We will explore a few. Come ready to play!

Everyone is invited to play some board and card games in Ballroom H following the conclusion of this talk.

WAMATYC Annual Membership Meeting

Friday 3:30-4:30 p.m.
All current and prospective members of WAMATYC, the Washington state affiliate of the American Mathematical Association of Two-Year Colleges, are welcome to attend.

Keynote Address

Exploding Dots: The Mathematical Phenomenon That Is Sweeping the Globe
James Tanton • Mathematical Association of America

What are those strange dots-and-boxes diagrams scattered throughout the conference program? What has 4.6 million teachers and students all across the globe abuzz with excitement? What piece of genuine mathematics can be so exciting and so engaging so as to cause adults and kids alike to leap out of their seats and yell out "KAPOW"? Why it is Exploding Dots, of course! Experience the joy and awe that comes from pushing a simple mathematical idea to the max. See the math you know like you've never seen it before, and see math you've likely never seen. Warning: It is best to come to this experience with an extra pair of socks - your first pair will be knocked right off!

INVITED SPEAKERS

Dr. James Tanton is an ambassador for the Mathematical Association of America currently serving as their mathematician-at-large. He has taught mathematics at both university and high-school institutions, works with students of all ages and backgrounds to experience the wonder of mathematics, has authored many books about math puzzles and problem-solving, and co-founded the Global Mathematics Project, which in its first year helped more than 1,000,000 students from over 100 countries explore Tanton's worldfamous "Exploding Dots" during Global Math Week 2017.

Dr. Luke Rawlings was born and raised in Memphis, where he earned a B.S. in Mathematics at Christian Brothers University. After years of training as a competitive gymnast, he moved to New York City to become a performer on Broadway. Following a successful theater career, Luke earned a masters in pure mathematics at the City College of New York and then an Ed.D. in Mathematics Education at Teachers College, Columbia University. Throughout all of these experiences, he has designed tessellations inspired by the art of M.C. Escher. Luke has taught at Bellevue College since 2016.

Olga Shatunova, a lecturer in the School of Interdisciplinary Arts \& Sciences at the University of Washington Tacoma, has focused her studies on discrete mathematics with an emphasis on diagram completeness of deterministic finite automata. In her teaching, she incorporates her own diverse cultural background and life experience. Born and educated in Russia, she has taught mathematics in Moscow at the University for Engineers of Metallurgy and Aviation Institute and in Washington at several community colleges. She has worked, taught and developed curriculum in Russia, France, Germany and the United States.

Session VI

Math Pathways: What's Working, What's Not Bill Moore • SBCTC | Helen Burn • Highline College Barbara Alvin • Eastern Washington University

An update on the current "state of the art" regarding math pathways as the formal Washington Math Pathways to Completion initiative wraps up. Topics will include: what colleges are doing with respect to pre-college pathways in math; how math pathways are being integrated with "guided pathways"; and what a study of math course-taking tells us about how well existing math pathways are working for transfer students.

Calculus Fun Facts

Jeff Eldridge • Edmonds Community College
When defining a Riemann sum, does it suffice to consider only regular partitions? If so, is there any reason to use nonregular partitions? Is there a way to develop MacLaurin polynomials (with error bounds!) without knowing anything about infinite or alternating series? Why do we use the ∂ symbol to denote the boundary of a region as well as a partial derivative? And more!

Artistic Math Using 3D Printing
 Lee Singleton - Whatcom Community College

Learn about Math 175, "Grasp the Math: Intro to 3D Printing," a class for students to explore 3D design work with an emphasis on using mathematics in the design process. Students learn how to design objects for 3D printing using OpenSCAD (and a few other free programs), starting with basic shapes but learning to incorporate space curves and parametric surfaces by the end of the course. See samples designed by students, assigned projects, class resources, and the artistry that only math can provide.

Card Flipping: A Mathematical Solitaire Game
Matthew Meerdink • Highline College
We will learn to play a game of mathematical solitaire and solve it. Then we will try to find new, similar games to solve.

Integrating Pre-college Math With Science
 Rheannin Becke - Clark College

This session will provide a glimpse at how Clark College Transitional Studies has integrated math and science into a beginning algebra class. You will get to try some activities where students practice math in the context of science.

Session VII

More Exploding Dots: Weird and Wild Fun James Tanton • Mathematical Association of America
You might be sockless, but come anyway! In this session let's really get wild and crazy. Let's play with fractional bases, negative bases, irrational bases, decimals and -adics and whatever weird and marvelous concoctions we can devise. Let's even try to solve an open problem or two or three!

Getting Started With Desmos and Blender

Salah Abed • Big Bend Community College
Do you spend a lot of time graphing in class? Do you spend minutes at a time hand-waving explanations for what solids of revolution and two-sheet hyperboloids look like in \mathbb{R}^{3} ? Do you try to animate graphs and realize you have nothing but a marker and a stationary whiteboard? At this talk, I'll get you up and running in Blender and Desmos, and we'll share tips and tricks that we've discovered along the way. Bring your own examples to share with the group, or bring yourself and come to learn!

Co-requisites: A Roundtable Discussion

Facilitator: David Lippman • Pierce College Ft. Steilacoom
Is your college considering a co-requisite model where students who place into developmental math are allowed to take a college-level course with co-requisite support? Come discuss your ideas, plans and research with others.

Gray Codes: An Unusual Application to Trigonometry G Richard Plagge • Highline (emeritus) \& Pierce Colleges Olga Shatunova • University of Washington Tacoma
Gray codes (named after Frank Gray, who invented them in 1940s at AT\&T Bell Laboratories to minimize the effect of errors in transmitting digital signals) are widely used to facilitate error correction in digital communications such as digital television and some cable TV systems. We will discuss the history and practical applications of Gray codes and introduce an unusual application to trigonometry.

Idea Café: Course Redesign

Facilitator: Luke Rawlings • Bellevue College
An active-participation collaborative session providing an opportunity for faculty to redesign a course by weaving together a story to appeal to current students and incorporate modern approaches.

SPECIAL THANKS

Luke Rawlings for the program cover image • staffs of Yakima Convention Center and Red Lion Yakima Center • Will Minerich and Knewton Inc. for brewery tour and transportation \bullet Eric Ziegler of Cengage for yoga instruction \bullet members of the Green River math department and XYZ Textbooks for door prizes \bullet AMATYC for door prizes and book bags \bullet WAMATYC for their invited speaker and the WAMATYC awards •Kelvin Nesvog and the EdCC Print and Mail Center staff • Bev Felton, Marina Kholoshenko and the rest of the EdCC accounting and cashier staff • Carey Schroyer and the EdCC STEM Division

ATTENDEES	Loreta Sandoval	Highline College	Scottsdale	University of
Bates Technical College	LaVerta Schmeling	Sarah Adams	Community College	Washington Bothell
Emily Asher		*Helen Burn	*William Meacham	*Robin Angotti
Paula Emerson-Glade	Columbia Basin	Charly Cohen		*Abram Girgis
Nancy Landeis	College Alexandria Anderson	Barbara Hunter	Anna Jacobs	*Rejoice Mudzimiri
Bellevue College	Meg Bartrand Robert DeLorto	Terry Meerdink	*Danielle Mallare-Dani *Jonathan Ursin	University of
Malini Ajwani		*Matthew Meerdink		
Saras Bala	Melissa Filkowski	Khoi-Nguyen Nguyen		Washington Tacoma
Rini Chakrabarti	Nicholas Gardner	Aaron Warnock	Shoreline	*Brian Heaven
Ricardo Chavez	Jenny Hughes	Dusty Wilson	Community College	*Shubha Rajopadhye
Dale Hoffman	*Rebecca Luttrell	Dusty Wison	Steven Bogart	*Olga Shatunova
Sunmi Ku	*Ryan Orr	Kodiak College	Christopher Hardy	*Haley Skipper
Jennifer Laveglia	Tracie Russell	Jesse Mickelson	Juliet Lovejoy	Rita Than
Sarah Massengill	John Spence	Lake Washington	Trevor Pelletier	*Erik Tou
Mausumi Maulik	Jose Vidot	Institute of Technology	Rosalie Tepper	Walla Walla
Tatiana Mihaylova Rose Pugh	Limin Zhang	Narayani Choudhury Jim Francis	Marek Wyzgowski	Community College
				Chris Mehl
Mathi Radhakrishnan Usha Raman	Eastern Washington University	Sue Kuestner	Timothy Banham	Julianne Sachs
*Luke Rawlings	*Barbara Alvin	Mathematical	Daniel Graber	Wenatchee Valley College
Jen Townsend	*Yves Nievergelt	Association of America	Brian Heinze	Kerin Keys
Tim Trammel	Becky Sommers	*James Tanton	Charles Stevens	Benjamin Van Dyke
Big Bend	Edmonds Community College	North Idaho College	South Puget Sound	Whatcom Community College Yumi Clark
		Susanne Bromley		
Community College	David Adams	Jason Droesch	*Allen Mauney	Jody DeWilde
Salah Abed	Mary Anderson	*Eric Mack	Cesar Villasana	*Leslie Glen
Jonathan Bauer	*Jeff Eldridge	Ben Tschida		Nathan Hall
Veronica Guadarrama	Terry Goldstick	Kelly Wilderson	South Seattle College	Mei Luu
Brinn Harberts	Lourdes Gutierrez		John Toutonghi	*Lee Singleton
Barbara Whitney	Melissa Hope	Catherine Conway	Jian Zou	*William Webber
	*Tiffany Ledford	Ralph Jenne	Spokane Falls	Yakima Valley College
Cascadia College	*Nancy Marx	*Deanna Li	Community College	Michael Jenck
Cynthia Bea	*Gabrielle McIntosh	Hon Li	*Christopher Cary	Greg Kent
*Megan Luce	Wayne Neidhardt	*Pam Lippert	Michael Gaul	Douglas Lewis
Yanhong Tong	Doug Owen	Olympic College	Kialynn Glubrecht	Matthew Lewis
Srividhya Venkatraman	Ananya Rabeya	Ann Brackebusch	Jeremy Koziol	George Lopez
Steve Yramategui	Mahnaz Sadrenassiri	Elisabeth Briggs	Peter Wildman	Martin Meister Steve Mock
Central Washington	Carey Schroyer	Denise D'Haenens-Luker	State Board of	Anna Pascoe
University	Jadwiga Weyant	Barbara Farr	Community and	*Michal Ramos
Andrew Richards	Everett	Mary Ann Kelso Elizabeth O'Neil	Technical Colleges *Bill Moore	Panyada Sullivan
Centralia College	Community College	Donald Robertson		guests
Preston Kiekel	George Howard	Shawn Triplett	Tacoma	Jacob Anderson
Dan Taylor	*Alys Hugo	Shawn Triplet	Community College	Lorna Larsen
David Tonn	*Mike Story	Phoenix College	Jonathan Armel	Tom Pugh
Clark College	Julian Trujillo	*Frank Marfai	Carol Avery Sellie DeMarco	exhibitors
*Rheannin Becke	Green River College	Pierce College	Kendra Feinstein	Cengage
Aaron Bingham	Allison Beckwith	Chad Bemis	Mike Flodin	John Wiley \& Sons
Paul Casillas	Donnie Hallstone	Cody Fouts	Jackie Gorman	Knewton Inc.
Mark Elliott	*Mike Kenyon	Stewart Jaffe	Anne Hafer	Pearson
Sally Keely	Stephan Kinholt	Pete Kaslik	Min Kim	WAMAP/OpenTextBookStore
*Murali Krishna	Lara Michaels	*Rajesh Lal	Brock Leach	XYZ Textbooks
*John Mitchell	Adriana Milligan	Javid Lippman	Valerie Morgan-Krick	
Robert Weston	Rochelle Mitchell Laura Moore-Mueller	Julia Myers	Amber Mozeleski Judy Petkovsek	*denotes presenter
Clover Park	Paul Mueller	Thomas Phelps	Trung Tran	
Technical College	David Nelson	*Richard Plagge Melonie Rasmussen Erica Shannon Michele Wallace Larry Wiseman	Christopher Willett	
Dion Alexander				
Tula Mollas				

Challenge Problem Solutions

1. Using integration by parts with $u=x$ and $d v=x^{49}\left(1-x^{50}\right)^{100} d x: A=\int_{0}^{1}\left(1-x^{50}\right)^{101} d x=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x-$ $\int_{0}^{1} x \cdot x^{49}\left(1-x^{50}\right)^{100} d x=W-\left[\frac{-1}{5050} \int_{0}^{1} x\left(1-x^{50}\right)^{101} d x+\frac{1}{5050} \int_{0}^{1}\left(1-x^{50}\right)^{101} d x\right]=W-\frac{1}{5050} A \Rightarrow \frac{W}{A}=\frac{5051}{5050}$.
2. $\prod_{k=1}^{2018} \cos \left(\frac{k \pi}{1009}\right)=-\prod_{k=1}^{1008} \cos ^{2}\left(\frac{k \pi}{1009}\right)=-\prod_{k=1}^{504} \cos ^{4}\left(\frac{k \pi}{1009}\right)=-C^{4}$ where $C=\prod_{k=1}^{504} \cos \left(\frac{k \pi}{1009}\right)$ so if $S=\prod_{k=1}^{504} \sin \left(\frac{k \pi}{1009}\right)$:

$$
S C=\prod_{k=1}^{504} \sin \left(\frac{k \pi}{1009}\right) \cos \left(\frac{k \pi}{1009}\right)=\frac{1}{2^{504}} \prod_{k=1}^{504} \sin \left(\frac{2 k \pi}{1009}\right)=\frac{1}{2^{504}} \prod_{j=1}^{504} \sin \left(\frac{j \pi}{1009}\right)=\frac{S}{2^{504}} \Rightarrow C=2^{-504}
$$

using the identities $2 \sin (\varphi) \cos (\varphi)=\sin (2 \varphi)$ and $\sin (\psi)=\sin (\pi-\psi)$, hence $-C^{4}=-2^{-2016}$.
3. If the rightmost intersection point of the line and the curve is (b, c), then $\int_{0}^{b}\left[2018 x-50 x^{3}-c\right] d x=0$ so:

$$
1009 b^{2}-12.5 b^{4}-b c \Rightarrow c=1009 b-12.5 b^{3}=2018 b-50 b^{3} \Rightarrow b=\sqrt{\frac{2018}{75}} \Rightarrow c=\frac{2018 \sqrt{2018}}{15 \sqrt{3}}
$$

4. Let X be the number of distinct badges she selects, and for $1 \leq k \leq 50$ let $X_{k}=1$ if badge k is among those selected and 0 otherwise. Hence $E\left(X_{k}\right)=1-\left(\frac{49}{50}\right)^{18}$ so $E(X)=\sum_{k=1}^{50} E\left(X_{k}\right)=50\left(1-\left(\frac{49}{50}\right)^{18}\right) \approx 15.24$.
5. $\binom{18+4-1}{4-1}-\left[\binom{21-7}{3}+\binom{21-5}{3}-\binom{21-12}{3}\right]-1=1330-[364+560-84]-1=489$
6. If b_{k} is the amount in B after k iterations then $b_{k+1}=\frac{1}{2}\left(50-b_{k}\right)+\frac{5}{8} b_{k}=25+\frac{1}{8} b_{k}$. Because $\left\{b_{k}\right\}$ is bounded $\left(0 \leq b_{k} \leq 50\right)$ and monotonic (by induction, considering the cases where b_{0} is greater than, less than, or equal to $\frac{200}{7} \operatorname{liters}$), $\beta=\lim _{k \rightarrow \infty} b_{k}$ exists, so $\beta=25-\frac{1}{8} \beta \Rightarrow \beta=\frac{200}{7}$ liters (regardless of the original amounts in A and B).
7. $I=\sum_{k=0}^{49} \int_{0}^{\pi} e^{t+k \pi}\left[\cos ^{2018}(t+k \pi)+\sin ^{2018}(t+k \pi)\right] d t=\sum_{k=0}^{49} e^{k \pi} \cdot J \Rightarrow \frac{I}{J}=\frac{e^{50 \pi}-1}{e^{\pi}-1}$.
8. $P(\alpha<\beta<\gamma<\delta<\epsilon)=\frac{910252}{12000000}=\frac{227563}{3000000} \approx 0.07585433333$; see http://goo.gl/UgBmNX for details.
9. When the hour hand moves through an angle θ, the minute hand moves 12θ and the second hand 720θ. The minute hand is opposite the hour hand when $\theta+\pi=12 \theta \Rightarrow \theta=\frac{\pi}{11}$, and at 12:50 a.m. $\theta=\frac{5 \pi}{36}$. The second hand is not on the same side of a diameter of the clock as the hour and minute hands for $\frac{(2 k+1) \pi}{719}<\theta<\frac{(2 k+1) \pi}{708}$ when $\theta<\frac{\pi}{11}$ and for $\frac{(2 k+1) \pi}{708}<\theta<\frac{(2 k+3) \pi}{719}$ when $\theta>\frac{\pi}{11}$, hence the total time when all three hands are not on the same side of a diameter is:

$$
50 \cdot \frac{36}{5 \pi} \cdot \pi\left(\left[\frac{1}{708}-\frac{1}{719}\right] \sum_{k=0}^{31}(2 k+1)+\left[\frac{1}{11}-\frac{65}{719}\right]+\frac{2 \cdot 17}{719}+\left[\frac{1}{719}-\frac{1}{708}\right] \sum_{k=32}^{48}(2 k+1)+\left[\frac{5}{36}-\frac{99}{708}\right]\right)
$$

and the total time when the hands are on the same side of a diameter simplifies to 35 minutes and $52+\frac{354088}{466631}$ seconds.
10. For constants A, B and C, and some polynomial $P(x)$ with degree $d-3 \leq 2015, \frac{\pi(x)}{x^{3}-x}=P(x)+\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$ so write $\frac{d^{2018}}{d x^{2018}}\left[P(x)+\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}\right]$ as:

$$
0+\frac{A \cdot 2018!}{x^{2019}}+\frac{B \cdot 2018!}{(x-1)^{2019}}+\frac{C \cdot 2018!}{(x+1)^{2019}}=2018!\cdot \frac{A\left(x^{2}-1\right)^{2019}+B x^{2019}(x+1)^{2019}+C x^{2019}(x-1)^{2019}}{\left(x^{3}-x\right)^{2019}}
$$

hence $\varphi(x)$ is a (polynomial) multiple of the numerator. Choosing that multiple to be 1 and noting that $A B C \neq 0$:

$$
\varphi(x)=(A+B+C) x^{4038}+2019(B-C) x^{4037}+2019(-A+1099 B-1009 C) x^{4036}+\mathcal{O}\left(x^{4035}\right)
$$

If $B=C$ and $A=-2 B$ the x^{4038} and x^{4037} coefficients are 0 while that of x^{4036} is $-A \neq 0$. The minimal degree is 4036 .

Challenge Problem Sources

1. Problem \#45 on page 101 of How to Integrate It by Seán M. Stewart.
2. http://sigmaa.maa.org/mcst/documents/WRANGLEJMM2018.pdf
3. Adapted from Problem A1 on the 1993 Putnam Exam.
4. Adapted from: https://goo.gl/9AoK4v
5. Variation of classic "stars and bars" problem.
6. Variation of:https://twitter.com/jamestanton/status/980072187091550209
7. Variation of \#21 on page 50 of How to Integrate It.
8. https://twitter.com/jamestanton/status/963763305000005632
9. https://twitter.com/jamestanton/status/896724811287715840
10. Adapted from Problem B4 on the 1992 Putnam Exam.

ssu！̣！Mey usi！səрәу əs．noว ：әғว еәрІ	§！цL of uo！̣eग！！ddV uv ：səpoう Kex	ueudd！ 7 әтетрипоy sวн！！！！nbax－oว	paqV ләриәдя pue sousəa 	иоłие unt рІ！М рие рл！əм 	＇u＇e 0e：LL－0才：0L	II Λ
әүગӘЯ 	خ্যи！рләәW ：8u！̣d！！preว	 su！̣u！̣d đع 8u！̣я чłе	ә8р！̣р园 słped und $^{\text {un }}$ sninule	 	＇u＇e 0Z：0L－0¢＊6	I Λ
H	5	H	G	V		
				7sej＞persg	＇ure 00：6－0¢：L	
					人\＃OUП＾\＃S	
	\uparrow	su！̣u！n ${ }^{\text {ełpa }}$ ［еиоң̣еэпря			＇u•d $\varsigma z: \varepsilon-00: \varepsilon$	
иоКиә＞्र ¡səuro 2．0W Krid	soury чџе โе！рәшәу 	 	```unng``` ```8u!uo!!!suexL```	 	$\cdot u \cdot d$ 00：c－sc：z	Λ
euYS！\geqslant I sIDS．OW $\boldsymbol{\partial}^{\mathbf{Z z n}} \mathbf{d}$	Клеว LS日G－І е！̣ Кемчəед чџе末 рәұехәГәэヲ	 	әКчредо！еу жя иәлеән ‘xədd！̣欠 ‘no 		$\cdot u \cdot d 0 z: z-0 \varepsilon \cdot L$	\I
				чsun7	＇u•d 9 I：L－00：ZI	
！̣osuV ヌ8 ！！！u！̣pnW еще ңо ри！＞MəN V 		 	KIOFS $7808 \mathrm{n}_{\mathrm{H}}$ sКемчłед чłг 	елоипұечS К8ојоичэдц эо 	＇u＇e 0s：LI－00：LI	III
！7 8 子 ¡ооче＞ЧІ！М SSE 	 ұиәшeıәдиәц рие 8u！unl［eo！snW	```әлооW >> วЈп\ ұuәussass% पІеN [00Y`S प`̊!H```	snโnjpeว pue soisאчd ：UO！̣ON U！ЧłएN	```KəuneN \\ sэ！̣s！̣еłS U！łхәұиоつ рие Кұ！̣и！̣uoว```	＇u＇e St：0I－Gs：6	II
ひəЮ suis＠¡uO әuè		sכ！̣s！̣ełs ，u！dd！！	ueudd！̣！ dVWVM U！ Kч！！！q！ssวoวV	IIวYวҰ！W әұерd Ω шођәу чъе	－u＇e 0才：6－0¢：8	I
H	9	H	G	V		
					人＊OIU」	
					＇u•d 00：6－0e：L	

